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Abstract: This paper presents the formulation of time-fractional Klein-Gordon equation using the Euler-Lagrange
variational technique in the Riesz derivative sense and derives an approximate solitary wave solution. Our results
witness that He’s variational iteration method was very efficient and powerful technique in finding the solution of
the proposed equation. The basic idea described in this paper is efficient and powerful in solving wide classes of
nonlinear fractional high order evolution equations.
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1 Introduction
Our aim is to apply the reliable treatment of He’s vari-
ational iteration method [1–4] to obtain the solution of
the initial value problem of the time-fractional Klein-
Gordon equation of the form with the initial condi-
tions 

R
0D

α
t u− a(u2)xx + b(u2)xxxx = 0,

u(x, 0) = φ1(x),
ut(x, 0) = φ2(x),

(1)

where 1 < α < 2, a, b > 0, u = u(x, t) is a field
variable, x ∈ Ω (Ω ⊆ R) is a space coordinate in the
propagation direction of the field and t ∈ T (= [0, t0]
(t0 > 0)) is the time, R

0D
α
t is the Riesz fraction-

al derivative, φ1(x) and φ2(x) are given functions.
The subscripts denote the partial differentiation of the
function u with respect to the parameter x and t.

Fractional calculus have attracted much attention
during recent years due to their numerous applica-
tions in physics and engineering [5–8], such as, the
nonlinear oscillation of earthquake can be modeled
with fractional derivatives [9], and the fluid dynamic
traffic model with fractional derivatives can eliminate
the deficiency arising from the assumption of contin-
uum traffic flow [10]. Finding of a new mathemati-
cal algorithm to construct exact solution of nonlinear
fractional order evolution equations is important and
might have significant impact on future research, we
notice that the Lagrangian of conservative system is
constructed using fractional derivatives, the resulting

equations of motion can be nonconservative. There-
fore, in many cases, the real physical processes could
be modeled in a reliable manner using fractional-order
differential equations [11]. Based on the stochastic
embedding theory, Cresson [12] defined the fraction-
al embedding of differential operators and provided
a fractional Euler-Lagrange equation for Lagrangian
systems, then investigated a fractional Noether theo-
rem and a fractional Hamiltonian formulation of frac-
tional Lagrangian systems. Herzallah and Baleanu
[13] presented the necessary and sufficient optimali-
ty conditions for the Euler-Lagrange fractional equa-
tions of fractional variational problems with determin-
ing in which spaces the functional must exist. Mali-
nowska [14] proposed the Euler-Lagrange equations
for fractional variational problems with multiple in-
tegrals and proved the fractional Noether-type theo-
rem for conservative and nonconservative generalized
physical systems. Riewe [15,16] formulated a version
of the Euler-Lagrange equation for problems of cal-
culus of variation with fractional derivatives. Wu and
Baleanu [17] developed some new variational itera-
tion formulae to find approximate solutions of frac-
tional differential equations and determined the La-
grange multiplier in a more accurate way. For gener-
alized fractional Euler-Lagrange equations we can re-
fer to the works by Odzijewicz [18]. Other the known
results we can see Baleanu et al [19] and Inokuti et
al [20]. Thanks to the most of physical phenomena
may be considered as nonconservative, then they can
be described using fractional-order differential equa-
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tions.
Klein-Gordon equation describes relativistic elec-

trons, and correctly describes the spinless pion, the
equation was first considered as a quantum wave e-
quation by Schrödinger in his search for an equation
describing de Broglie waves, and plays a significant
role in mathematical physics and many scientific ap-
plications such as solid-state physics, nonlinear optic-
s, and quantum field theory [21, 22]. The equation
has attracted much attention in studying solitons and
condensed matter physics [23–25], in investigating the
interaction of solitons in a collisionless plasma, the
recurrence of initial states, and in examining the non-
linear wave equations [26]. Recently, several methods
have been used to solve fractional Klein-Gordon equa-
tion using techniques of nonlinear analysis, such as
homotopy perturbation method [27], homotopy anal-
ysis method [28], Riccati expansion method [29], new
iterative method [30,31], the first integral method [32]
and series expansion method [33] et al. It was men-
tioned that the variational iteration method has been
used successfully to solve fractional KdV equation
[34]. The objective of this paper is to extend the appli-
cation of the fractional variational iteration method to
formulate a high-order time-fractional Klein-Gordon
equation and derive an approximate solitary wave so-
lution.

This paper is organized as follows: Section 2 s-
tates some background material from fractional calcu-
lus. Section 3 presents the principle of He’s variation-
al iteration method. Section 4 is devoted to describe
the formulation of the time-fractional Klein-Gordon
equation using the Euler-Lagrange variational tech-
nique and to derive an approximate solitary wave so-
lution. Section 5 makes some analysis for the obtained
graphs and figures and discusses the present work.

2 Preliminaries

We recall the necessary definitions for the fractional
calculus (see [35–37]) which is used throughout the
remaining sections of this paper.

Definition 1 A real multivariable function f(x, t),
t > 0 is said to be in the space Cγ , γ ∈ R with re-
spect to t if there exists a real number p(> γ), such
that f(x, t) = tpf1(x, t), where f1(x, t) ∈ C(Ω×T ).
Obviously, Cγ ⊂ Cδ if δ ≤ γ.

Definition 2 The left-hand side Riemann-Liouville
fractional integral of a function f ∈ Cγ , (γ ≥ −1)

is defined by

0I
α
t f(x, t) =

1

Γ(α)

∫ t

0
(t− τ)α−1f(x, τ)dτ, α > 0,

0I
0
t f(x, t) = f(x, t).

Definition 3 The Riemann-Liouville fractional
derivatives of the order n − 1 ≤ α < n of a function
f ∈ Cγ , (γ ≥ −1) are defined as

0D
α
t f(x, t)

=
1

Γ(n− α)

∂n

∂tn

∫ t

0
(t− τ)n−α−1f(x, τ)dτ,

tD
α
t0f(x, t)

=
1

Γ(n− α)

∂n

∂tn

∫ t0

t
(τ − t)n−α−1f(x, τ)dτ.

Lemma 4 The integration of Riemann-Liouville frac-
tional derivative of the order 0 < α < 1 of the func-
tions f , g, tD

α
t0f(x, t), 0D

α
t g(x, t) ∈ C(Ω × T ) by

parts is given by the rule∫
T
f(x, t)0D

α
t g(x, t)dt =

∫
T
g(x, t)tD

α
t0f(x, t)dt.

Definition 5 The Riesz fractional integral of the or-
der n − 1 ≤ α < n of a function f ∈ Cγ , (γ ≥ −1)
is defined as

R
0 I

α
t f(x, t) =

1

2

(
0I

α
t f(x, t) + tI

α
t0f(x, t)

)
=

1

2Γ(α)

∫ t0

0
|t− τ |α−1f(x, τ)dτ,

where 0I
α
t and tI

α
t0 are respectively the left- and right-

hand side Riemann-Liouville fractional integral oper-
ators.

Definition 6 The Riesz fractional derivative of the or-
der n − 1 ≤ α < n of a function f ∈ Cγ , (γ ≥ −1)
is defined by

R
0D

α
t f(x, t) =

1

2

(
0D

α
t f(x, t) + (−1)ntD

α
t0f(x, t)

)
=

1

2Γ(n− α)

dn

dtn

∫ t0

0
|t− τ |n−α−1

× f(x, τ)dτ,

where 0D
α
t and tD

α
t0 are respectively the left- and

right-hand side Riemann-Liouville fractional differ-
ential operators.
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Lemma 7 Let α > 0 and β > 0 be such that n− 1 <
α < n, m − 1 < β < m and α + β < n, and let
f ∈ L1(Ω× T ) and 0I

m−α
t f ∈ ACm(Ω× T ). Then

we have the following index rule:

R
0D

α
t

(
R
0D

β
t f(x, t)

)
= R

0D
α+β
t f(x, t)

−
m∑
i=1

R
0D

β−i
t f(x, t)|t=0

t−α−i

Γ(1− α− i)
.

Remark 8 One can express the Riesz fractional dif-
ferential operator R

0D
α−1
t of the order 0 < α < 1 as

the Riesz fractional integral operator R
0 I

1−α
τ , i.e.

R
0D

α−1
t f(x, t) = R

0 I
1−α
t f(x, t), t ∈ T.

3 Variational-iteration method
The variational iteration method provides an effective
procedure for explicit and solitary wave solutions of
a wide and general class of differential systems rep-
resenting real physical problems. Moreover, the vari-
ational iteration method can overcome the foregoing
restrictions and limitations of approximate techniques
so that it provides us with a possibility to analyze
strongly nonlinear evolution equations. Therefore, we
extend this method to solve the time-fractional Klein-
Gordon-type equation. The basic features of the vari-
ational iteration method outlined as follows.

Considering a nonlinear evolution equation con-
sists of a linear part Lu, nonlinear part Nu, and a free
term g(= g(x, t)) represented as

Lu+Nu = g. (2)

According to the variational iteration method, the
n+1-th approximate solution of (2) can be read using
iteration correction functional as

un+1 = un +

∫ t

0
λ(τ)

(
Lũ+N ũ− g

)
dτ, (3)

where λ(τ) is a Lagrangian multiplier and ũ = ũ(x, t)
is considered as a restricted variation function, i.e.,
δũ = 0. Extreming the variation of the correction
functional (3) leads to the Lagrangian multiplier λ(τ).
The initial iteration u0 can be used as the initial value
u(x, 0). As n tends to infinity, the iteration leads to
the solitary wave solution of (2), i.e.

u = lim
n→∞

un.

4 Time-fractional Klein-Gordon e-
quation

The Klein-Gordon equation is given as

utt − a(u2)xx + b(u2)xxxx = 0. (4)

Employing a potential function v on the field vari-
able u, set u = vx yields the potential equation of
the Klein-Gordon equation (4) in the form,

vxtt − a(v2x)xx + b(v2x)xxxx = 0. (5)

The Lagrangian of this Klein-Gordon equation
(4) can be defined using the semi-inverse method
[38, 39] as follows. The functional of the potential
equation (5) can be represented as

J(v) =

∫
Ω
dx

∫
T
dt
(
c1vvxtt − ac2v(v

2
x)xx

+ bc3v(v
2
x)xxxx

)
, (6)

with ci (i = 1, 2, 3) is unknown constant to be deter-
mined later. Integrating (6) by parts and taking

vx|∂T = vxt|∂T = vx|∂Ω = (v2x)x|∂Ω
= (v2x)xxx|∂Ω = 0 (7)

yield

J(v) =

∫
Ω
dx

∫
T
dt
(
c1vxvtt − ac2(v

2
x)vxx

+ bc3(v
2
x)xxvxx

)
. (8)

The constants ci (i = 1, 2, 3) can be determined tak-
ing the variation of the functional (8) to make it opti-
mal. By applying the variation of the functional, in-
tegrating each term by parts, and making use of the
variation optimum condition of the functional J(v), it
yields the following representation

2c1vxtt − ac2(v
2
x)xx + bc3(v

2
x)xxxx = 0. (9)

We notice that the obtained result (9) is equivalent
to (5), so one has that the constants ci (i = 1, 2, . . . , 6)
are respectively

c1 =
1

2
, c2 = c3 = 1.

Then the functional becomes

J(v) =

∫
Ω
dx

∫
T
dt
(1
2
vxvtt − a(v2x)vxx + b(v2x)xxvxx

)
.
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In addition, the functional expression given by
(8) obtains directly the Lagrangian form of the Klein-
Gordon equation,

N(vtt, vx, vxx, vxxx) =
1

2
vttvx − av2xvxx + 2bv3xx

+ 2bvxvxxvxxx.

The Lagrangian of the time-fractional version of
the Klein-Gordon equation (1) could be read as

F (0D
α
t v, vx, vxx, vxxx) =

1

2
0D

α
t vvx − av2xvxx

+ 2bv3xx + 2bvxvxxvxxx,

α ∈]1, 2]. (10)

Then the functional of the time-fractional Klein-
Gordon equation will take the representation

J(v) =

∫
Ω
dx

∫
T
F (0D

α
t v, vx, vxx, vxxx)dt, (11)

where the time-fractional Lagrangian F (0D
α
t v, vx,

vxx, vxxx) is given by (10). Following Agrawal’s
method [40–42], the variation of functional (11) with
respect to v leads to

δJ(v) =

∫
Ω
dx

∫
T
dt
( ∂F

∂0Dα
t v
δ(0D

α
t v) +

∂F

∂vx
δvx

+
∂F

∂vxx
δvxx +

∂F

∂vxxx
δ(vxxx)

)
. (12)

By Lemma 4, upon integrating the right-hand side of
(12), one has

δJ(v) =

∫
Ω
dx

∫
T
dt
(1
2
C
t D

α
T vxδv +

1

2

(
vx0D

α−1
t δv

− vxt0D
α−2
t δv

)
|∂T − 1

2
0D

α
t vxδv

− ∂

∂x

(
− 2avxvxx + 2bvxxvxxx

)
δv

+
∂2

∂x2
(
− av2x + 2bvxvxxx + 6bv2xx

)
δv

− ∂3

∂x3
(
2bvxvxx

)
δv
)
,

noting that δv|∂T = δv|∂Ω = δvx|∂Ω = δvxx|∂Ω =
δv2x|∂Ω = δvxx|∂T = 0. vx|∂T = 0 in (7) implies

C
t D

α
T vx = tD

α
T vx.

Obviously, optimizing the variation of the func-
tional J(v), i.e., δJ(v) = 0, yields the Euler-
Lagrange equation for time-fractional Klein-Gordon

equation in the following representation

1

2
tD

α
T vx −

1

2
0D

α
t vx +

∂

∂x

(
2avxvxx − 2bvxxvxxx

)
− ∂2

∂x2
(
av2x − 2bvxvxxx − 6bv2xx

)
− ∂3

∂x3
(
2bvxvxx

)
= 0. (13)

Substituting the Lagrangian of the time-fractional
Klein-Gordon equation (10) into Euler-Lagrange for-
mula (13) obtains

1

2
tD

α
T vx −

1

2
0D

α
t vx + 6bv2xxx + 6bvxxvxxxx = 0.

Once again, substituting the potential function vx
for u, yields the time-fractional Klein-Gordon equa-
tion for the state function u as

1

2
tD

α
Tu− 1

2
0D

α
t u+ 6bu2xx + 6buxuxxx = 0. (14)

According to the Riesz fractional derivative
R
0D

α
t u, the time-fractional Klein-Gordon equation

represented in (14) can write as

R
0D

α
t u− 6bu2xx − 6buxuxxx = 0. (15)

Acting from left-hand side by the Riesz fractional op-
erator R

0D
1−α
t on (15) leads to

∂2u

∂t2
−

2∑
j=1

R
0D

2−j
t u|t=0

tα−2−j

Γ(α− 1− j)

+ R
0D

2−α
t

(
− 6b

(∂2u
∂x2

)2 − 6b
∂u

∂x

∂3u

∂x3

)
= 0,

(16)

from Lemma 7. In view of the variational iteration
method, combining with (16), the n + 1-th approxi-
mate solution of (15) can be read using iteration cor-
rection functional as

un+1(x, t) = un(x, t)−
∫ t

0
λ(τ)

(
∂2

∂τ2
un(x, τ)

− ∂

∂τ
un(x, τ)|τ=0

τα−3

Γ(α− 2)

+ un(x, 0)
τα−4

Γ(α− 3)

− 6bR0D
2−α
t

(( ∂2
∂x2

ũn(x, τ)
)2

+
∂

∂x
ũn(x, τ)

∂3

∂x3
ũn(x, τ)

))
dτ,

(17)
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where the function ũn is considered as a restricted
variation function, i.e., δũn = 0. The extreme of
the variation of (17) subject to the restricted variation
function straightforwardly yields

δun+1 = δun +

∫ t

0
λ(τ)δ

( ∂2
∂τ2

un(x, τ)
)
dτ

= δun + λ(τ)δ
( ∂
∂τ
un(x, τ)

)
|τ=t

− ∂

∂τ
λ(τ)δun(x, τ)|τ=t

+

∫ t

0
δun(x, τ)

∂2

∂τ2
λ(τ)dτ

=
(
1− ∂

∂τ
λ(τ)

)
δun(x, τ)|τ=t

+ λ(τ)δ
( ∂
∂τ
un(x, τ)

)
|τ=t

+

∫ t

0
δun(x, τ)

∂2

∂τ2
λ(τ)dτ = 0.

This expression reduces the following stationary con-
ditions

1− ∂

∂τ
λ(τ)|τ=t = 0, λ(τ)|τ=t = 0,

∂2

∂τ2
λ(τ) = 0,

which converted to the Lagrangian multiplier at

λ(τ) = τ − t.

Therefore, the correction functional (17) takes the fol-
lowing form

un+1(x, t) = un(x, t)−
∫ t

0
(τ − t)

(
∂2

∂τ2
un(x, τ)

− ∂

∂τ
un(x, τ)|τ=0

τα−3

Γ(α− 2)

+ un(x, 0)
τα−4

Γ(α− 3)

− 6bR0D
2−α
τ

(( ∂2
∂x2

un(x, s)
)2

+
∂

∂x
un(x, s)

∂3

∂x3
un(x, s)

))
dτ,

(18)

since α − 2 < 0, the fractional derivative operator
R
0D

α−2
t reduces to fractional integral operator R

0 I
2−α
t

by Remark 8.
In view of the right-hand side Riemann-Liouville

fractional derivative is interpreted as a future state of
the process in physics. For this reason, the right-
derivative is usually neglected in applications, when

the present state of the process does not depend on
the results of the future development, and so the right-
derivative is used equal to zero in the following calcu-
lations. The zero order solitary wave solution can be
taken as the initial value of the state variable from (1),
which is taken in this case as

u0(x, t) =
4c2

3a
cosh2

(1
4

√
a

b
x+ ξ

)
− c3t

3
√
ab

sinh
(1
2

√
a

b
x+ ξ

)
,

where c, ξ are the given constants.
Substituting this zero order approximate solitary

wave solution into (18) and using the Definition 6
leads to the first order approximate solitary wave so-
lution of the problem (1)

u1(x, t) =
4c2

3a

(
1 +

tα−2

Γ(α− 1)

)
cosh2

(1
4

√
a

b
x+ ξ

)
− c3

3
√
ab

(
t− tα−1

Γ(α)

)
sinh

(1
2

√
a

b
x+ ξ

)
− ac6tα+2

12b2(α+ 2)Γ(α)
cosh

(√a

b
x+ ξ

)
+
c5
√

a
b t

α+1

6bΓ(α+ 2)
sinh

(√a

b
x+ ξ

)
− c4tα

6bΓ(α+ 1)
cosh

(√a

b
x+ ξ

)
.

Substituting first order approximate solitary wave
solution into (18), using the Definition 6 then leads to
the second order approximate solitary wave solution
of the problem (1) as follows

u2(x, t) =
4c2

3a

(
1 +

3tα−2

Γ(α− 1)

)
cosh2

(1
4

√
a

b
x+ ξ

)
− c3

3
√
ab

(
t− 2tα−1

Γ(α)

)
sinh

(1
2

√
a

b
x+ ξ

)
− ac6tα+2

6b2(α+ 2)Γ(α)
cosh

(√a

b
x+ ξ

)
+
c5
√

a
b t

α+1

3bΓ(α+ 2)
sinh

(√a

b
x+ ξ

)
− c4tα

3bΓ(α+ 1)
cosh

(√a

b
x+ ξ

)
− c4

6b
cosh

(√a

b
x+ ξ

)( 2t2α−2

Γ(2α− 1)
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+
Γ(2α− 3)t3α−4

Γ2(α− 1)Γ(3α− 3)
+

tα

Γ(α+ 1)

)
− ac6

24b2
cosh

(√a

b
x+ ξ

)( 2tα+2

(α+ 2)Γ(α)

+
Γ(2α− 1)t3α−2

Γ2(α)Γ(3α− 1)
− t2α

Γ(2α)

)
− a4c12

24b5

× cosh
(
2

√
a

b
x+ ξ

) Γ(2α+ 5)t3α+4

(α+ 2)2Γ2(α)Γ(3α+ 5)

− a3c10

6b4
cosh

(
2

√
a

b
x+ ξ

) Γ(2α+ 1)t3α+2

Γ2(α+ 1)Γ(3α+ 3)

− a2c8

6b3
cosh

(
2

√
a

b
x+ ξ

) Γ(2α+ 1)t3α

Γ2(α+ 1)Γ(3α+ 1)

+ · · · .

Making use of the Definition 6 and some calcula-
tion, we obtain u3, u4 and so on, substituting n − 1
order approximate solitary wave solution into (18),
there leads to the n order approximate solitary wave
solution. As n tends to infinity, the iteration leads to
the solitary wave solution of the time-fractional Klein-
Gordon equation (1)

u(x, t) =
4c2

3a
cosh2

(1
4

√
a

b
(x− ct) + ξ

)
.

5 Discussion
The target of present work is to explore the effec-
t of the fractional order derivative on the structure and
propagation of the resulting solitary waves obtained
from time-fractional Klein-Gordon equation. We de-
rive the Lagrangian of the Klein-Gordon equation by
the semi-inverse method, then take a similar form
of Lagrangian to the time-fractional Klein-Gordon e-
quation. Using the Euler-Lagrange variational tech-
nique, we continue our calculations until the three-
order iteration. During this period, our approximate
calculations are carried out concerning the solution
of the time-fractional Klein-Gordon equation taking
into account the values of the coefficients and some
meaningful values namely, α = 1.98, 1.95, 1.90 and
1.85. The solitary wave solution of time-fractional
Klein-Gordon equation is obtained. In addition, 3-
dimensional representation of the solution u for the
time-fractional Klein-Gordon equation with space x
and time t for different values of the order α is pre-
sented respectively in Figure 1, the solution u is still a
single soliton wave solution for all values of the order
α. It shows that the balancing scenario between non-
linearity and dispersion is still valid. Figure 2 presents
the change of amplitude and width of the soliton due
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Figure 1 The surfaces of the approximate solutions u(x, t)

WSEAS TRANSACTIONS on MATHEMATICS Youwei Zhang

E-ISSN: 2224-2880 211 Volume 15, 2016



−2
−1

0
1

2

1

1.5

2
10

12

14

16

18

20

22

x

(B1)

α

u(
x,

α)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
10

10.5

11

11.5

12

12.5

u(
x,

0.
5)

(B2)

 

 

α=1.98

α=1.95

α=1.90

α=1.85
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Figure 3 The amplitude of the function u as a function of time t

at space x = 1 for order α: (C1) 3-dimensions graph, (C2)

2-dimensions graph

to the variation of the order α, 2- and 3-dimensional
graphs depicted the behavior of the solution u at time
t = 0.5 corresponding to different values of the or-
der α. This behavior indicates that the order α can be
used to modify the shape of the solitary wave without
change of the nonlinearity and the dispersion effects in
the medium. Figure 3 devoted to study the expression
between the amplitude of the soliton and the fraction-
al order at different time values. These figures show
that at the same time, the change of the fractional α
decreases the amplitude of the solitary wave.
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